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A set of numerical simulations was conducted to understand characteristics of oscillatory 
Marangoni convection in half-zone liquid bridges with various aspect ratios (from 0.6 to 2.2) 
and Prandtl numbers (from 0 to 0.02) by a finite difference method. The simulation results 
indicated that under smaller temperature differences the flow in the liquid bridge is 
axisymmetric but it becomes unstable against a three dimensional disturbance beyond a 
certain threshold value of temperature difference. The flow becomes steady three dimensional. 
This steady flow becomes unstable against time dependent three dimensional disturbances 
beyond a second critical condition. The numerical simulations revealed the critical conditions, 
3-D structure of disturbances and oscillation modes. The first critical conditions showed good 
agreements with those of linear stability analyses. The second critical conditions also agreed 
with previous values and gave new critical values for wide range of aspect ratio. Based on 
these simulations, a flow map was proposed for Pr=0 fluid. Critical Reynolds numbers, flow 
mode and types of oscillations were also determined for Pr=0.01 and 0.02 fluids. 
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1. INTRODUCTION 
 

Marangoni convection in a half-zone liquid bridge of length L and radius a confined 
between two differentially heated isothermals solid disks has become over the years a typical 
model for the study of Marangoni flows, their stability, and their bifurcations. The stability of 
free convection in non-isothermal liquid bridges with cylindrical free surface has been the 
subject of intense research. These studies are stimulated by the experimental fact that flow 
instabilities in such configurations is responsible for the appearance of striations in crystals 
grown by floating zone technique under microgravity. It is well known that the flow exhibits 
axisymmetric and steady toroidal roll cell structure if the temperature difference between the 
two disks is small and that it becomes unstable and a three-dimensional Marangoni flow 
arises when the applied temperature gradient exceeds a certain threshold value. On this 
subject, there have been many experimental works, theoretical studies by means of the linear 
stability analyses and non-linear numerical simulations. Experiments [1-3] performed with 
half zone liquid bridges of transparent and high Prandtl number liquids revealed that 3-D 
Marangoni flow starts always in an oscillatory mode (Hopf bifurcation). Recent 
developments of computers enabled large scale numerical simulation of the non linear and 
time-dependent Navier-Stokes equations. So far, several numerical investigations in the case 
of high Prandtl number liquids have become available [4-8]. Yasushiro et al. [4,5] , Zeng et al. 
[6] and Lappa et al. [7] analyzed the influence of the aspect ratio on the time-dependent 
threedimensional structure of Marangoni flow for Pr=1, 16 and 30 respectively, elucidating 



many features of the supercritical flow (e.g. the oscillation type, standing wave or travelling 
wave). Shevtsova et al. [8] studied the influence of the temperature-dependent viscosity on 
the supercritical flow field for 1<Pr<4. Recently, Tang et. al. [9] reported a transition from 
axisymmetric steady flow to a steady 3-D flow in a fat half-zone of high Prandtl number 
fluid.  

Linear stability analyses (Neitzel et al.[10], Kuhlmann and Rath [11], Wanschura et al. 
[12], Chen et al. [13], Chen and Hu [14], Chen et al. [15]) have confirmed that for high 
Prandtl numbers the instability is oscillatory (Hopf bifurcation) whereas for low Prandtl 
numbers the instability breaks the spatial axisymmetry (but the flow regime is still steady) 
prior to the onset of time dependent flow field.  Rupp et al. [16], Levenstan and Amberg 
[17] and Leypoldt et al. [18] found that for low Prandtl number fluids, the first bifurcation is 
stationary i.e., the supercritical three-dimensional state is steady, and that the flow becomes 
oscillatory only when the temperature difference is further increased. Lappa and Savino [19] 
studied the three dimensional structure (the azimuthal wave number of the 3-D disturbance) 
of the flow pattern after the steady bifurcation for Pr=0.04. Imaishi et al. [20,21] and 
Yasushiro et al. [22] depicted in detail the complex spatio-temporal behavior of the flow field 
that occurs after the second (oscillatory) bifurcation of the Marangoni flow for different 
values of the aspect ratio（defined as ratio of the length and of the radius of the liquid bridge, 
i.e. As=L/a）and of the Prandtl number (0≤Pr≤0.02), elucidating different oscillatory 
behaviors. 

Since it is very difficult to conduct well-controlled experiments with small Prandtl 
number fluids (mostly liquid metals) due to opacity, reactivity and high melting temperatures, 
there are only few experiments on the flow instability in half zone liquid bridges of 
semiconductor materials [23,24,25] and molten tin [26]. During on ground experimentation, 
sounding rocket missions and other parabolic flights, using a X-ray radiography with 
zirconium-cored tracers, Nakamura et al. [23,24] and Hibiya et al. [25] investigated the 
structure of the supercritical flow in a half-zone liquid bridge of molten silicon. Their 
experimental results gave some puzzling aspect and suggested that the oscillatory flow in 
silicon melt becomes very complex at large temperature differences. Then it is very important 
to investigate the experimental results by comparing the results of numerical simulations. In 
this report, we investigated the first and the second critical conditions for small Prandtl 
number fluids as a function of the aspect ratio. Especially, detailed calculations were 
conducted for zero Prandtl number fluid. In this case the instability is hydrodynamic in nature 
i.e., its mechanism does not involve a coupling between the temperature and the velocity 
disturbances. Effects of Prandtl number on the critical conditions are discussed. Further, we 
propose a flow map which predicts azimuthal wave numbers and oscillatory mode over a 
wide range of aspect ratio for Pr=0.    
 
 



 
Fig.1  Schematics of liquid bridge 

 
 
2. MODEL FORMULATIONS  
 

A standard model of half-zone liquid bridge as shown in Fig. 1 is adopted [20-22,30]. 
The liquid surface is assumed adiabatic, non-deformable and cylindrical. This shape is true 
under microgravity condition. There acts the Marangoni effect on the liquid surface. 
Fundamental equations are as follows.  
 
 0=⋅∇ U  (1) 

 ( ) UUUU 2∇+−∇=∇⋅+
∂
∂ P

τ
 (2) 

 ( ) Θ∇=�
�

�
�
�

� Θ∇⋅+
∂
Θ∂ 2Pr U
τ

 (3) 

 
Initial conditions: 

 U = 0,  Θ = -0.5   τ ≤ 0 
 

Boundary conditions:   
on both end plates (Z=0 and As): 
 U(R, θ, 0) = U(R, θ, As)= 0, Θ (R, θ, 0)=+0.5, Θ (R, θ, As)= - 0.5  

at the surface (R=1):          
 0/ =∂Θ∂ R , ZRZ ∂Θ∂−=∂∂ /Re/U , 

 ( ) θθ ∂Θ∂−=∂∂ /Re//2 RRR U , 0=RU  
 

These equations are equivalent to those reported last year. But slightly different 
definitions of non-dimensional variables are adopted as follows in order to enable simulations 
on Pr=0 fluid. The dimensionless parameters are the Prandtl number, the Reynolds and the 
Marangoni numbers defined as Pr=ν/α,  Re=σT∆Ta/µν and Ma=σT∆Ta/µα=RePr, 
respectively. The non-dimensional variables are defined as; {R, Z}= {r/a, z/a}, P = pa2/(νµ), 
U = ua/ν ,Θ = (T-Tm)/∆T, τ=tν/a2, where Tm = (Th+Tc)/2, α =λ/cp ρ , u: velocity, p: pressure, 
cp: heat capacity, ρ: density, λ: thermal conductivity, µ: viscosity and ν: kinematic viscosity.  
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3. NUMERICAL METHOD  
 

These equations are discretized by a finite difference method with a modified central 
difference treatment for the convective terms [27] and non-uniform staggered grids. 
Non-uniform grids were adopted to increase the resolution. The radial velocities on the 
central axis were calculated by means of the method of Ozoe et al. [28]. The HSMAC scheme 
was used to proceed time evolution of velocity and pressure. For the sake of reducing 
computation time, the energy equation was solved by an implicit method. By this 
modification, computation speed was increased by a factor of 3 to 10. This method becomes 
more effective for smaller Pr cases. Time step δτ was chosen between 1x10-5 and 1x10-4. 
Also a fully implicit code was developed in this year. This code provides very fast calculation, 
however, only on the super computer. The critical Reynolds numbers were searched by means 
of fully explicit method with time step δτ between 1x10-6 and 5x10-6. In this work, we gave 
3-D disturbances by imposing very small random value (average value=0, standard deviation 
of 10-8) on velocities on every grid points, as embryos of disturbance. These numerical 
disturbances incubate 3-D disturbances automatically and they start growth with time. A two 
dimensional (2D) simulation code with the same scheme and 2D grids was run in order to 
obtain a 2D solution under the same conditions. If we adopt thermophysical properties of 
molten silicon, such as ν=2.5x10-7 [m2/s], non-dimensional time span ∆τ=1 corresponds 
approximately to 100 seconds for a liquid bridge of 5.0mm in radius. The program was run 
on an MPU of the Fujitsu VPP700 at the Computer Center of Kyushu University or Compaq 
XP-1000. The validity of the numerical codes has been reported for Pr=1.02 fluid [4,5] and 
also for Pr=0.01 fluid [20,21,22] by comparing the first critical Reynolds numbers (Rec1) with 
those of linear stability analyses[12,13], and also comparing the second critical Reynolds 
numbers (Rec2) with available results [17,18]. By our codes, we determined both the first and 
the second critical Reynolds numbers within few percent of error from the reported values. 
 
 
4. RESULTS 
 
4.1 Results with Pr=0 
 
4.1.1 Steady 3-D flow and Rec1 

As shown in the previous Annual Report [30] Marangoni flow is induced by a linear 
axial temperature distribution but the temperature field would never be disturbed by any 
change of flow pattern. Transient numerical simulations with a small value of Re (Re>Rec1) 
shows an exponential growth of 3-D disturbance with time with a growth rate constant β. 
Mode of the 3-D Marangoni flow is characterized by the azimuthal wave number, m. Then, 
the growth process of disturbance would be expressed as: 
 

X(τ) = X(0)sin(mθ)exp(βτ)  
 

Origin of the 3D flow in half-zone of Pr=0 fluid was explained as a shear instability 
caused in the return flow. Under very small Re, the cold return flow goes back along the axis 
as a coaxial plume. As increasing Re, the flow rate increases and large amount of returning 
liquid meets at the axis near the cold plate. Shear instability occurs at a certain flow rate and 
the return flow is deformed oblate and cold fluid flows back obliquely and a 3-D flow pattern 
is formed [27]. In a short bridge (As=0.6), 3-D disturbance is characterized as m=3. In bridges 
of As=0.8-1.4, disturbance with m=2 is incubated and increases its amplitude until its steady 



state. In longer bridges, As=1.6 - 2.0, the most dangerous disturbance is characterized as m=1.  
In liquid bridges of Pr=0 fluid, the 3-D steady flow pattern of m=2 is dominant over wide 
range of As (As=0.8-2.0) except for the 3-D steady flow with m=3 at As=0.6. However, it 
should be noted that the most dangerous mode for As=1.8 and 2.0 is m=1.  
Thus determined Rec1 are smaller than those for finite Prandtl number fluids (Pr=0.01 and 
0.02) obtained by linear stability theory [12,13] as shown in Fig.2. At As=1.6, the most 
dangerous mode shows a cross-over from 2 to 1. Correspondingly, the first critical Reynolds 
number, Rec1, shows a local maximum at As=1.6. 
 
 

Fig.2  The first critical Reynolds number as a function of the aspect ratio. 
Keys and thin solid lines: Present results for Pr=0 fluid.  
Thick dotted line: First critical Reynolds numbers for Pr=0.02 by linear 

stability Analysis of Chen et al. [13] 
Insets show distribution of Z component of volticity on a horizontal cut plane 

at Z=0.5As.  
 
 
4.1.2 Oscillatory flow and the second critical Reynolds number, Rec2 

These steady 3-D flows become unstable against time-dependent 3-D disturbances 
and start oscillation at and beyond the second critical Reynolds number. In our previous 
report, we classified the 3-D oscillatory flow into 3 types and named them as follows; 1: 
(m+1) type: a time-dependent disturbance of m=1 is imposed on the basic steady flow of m, 
2: (m-T) torsional-oscillation (twisting or back and forth action in azimuthal direction) of the 
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longer axis of the cold plume with a wave number of m, and 3: (m-R) type; an oscillation 
mode accompanied by a rotating 3-D flow structure of m. The (m-R) type oscillatory flow is 
similar to the rotating 3-D flow in case of high Pr fluid. However, the 3-D flow in low Pr 
fluid is again hydrodynamic in nature. 

Growth and decay rate constant, β2, of the oscillation amplitudes depends on Re 
value. We can determine the second critical Reynolds number, Rec2, from a plot of β2 vs. Re, 
as reported in our previous works [20,21]. Thus determined values of Rec2  are plotted in 
Fig.3 as a function of As. Oscillation mode depends on the aspect ratio; short bridge exhibits 
oscillatory flow of m=3. At around As=0.8, Rec2 shows a local maximum. In a range 
0.9<As<1.2, (2+1) type oscillation is the most dangerous oscillation mode. Slightly longer 
liquid bridges, 1.3<As<1.6, a (2-T) type oscillation is the most dangerous mode. In longer 
liquid bridges, 1.8<As, a (2-T) type oscillation seems to be the most dangerous mode. 
However, the oscillation mode is complex and exhibits a long period alternation between 
(2-T) and (1-T) types.   
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Fig.3  The second critical Reynolds number as a function of aspect ratio for Pr=0 fluid. 

 
 



4.1.3 Flow map for Pr=0 
Results of our simulations for Pr=0 are summarized in Fig.4 as a flow map. This 

figure enables us a prediction of 3-D flow mode under a given condition, As and Re. It should 
be noted that m value changes with Re as well as As. At large value of Re, the oscillation 
becomes non-periodic and rather caotic and its power spectra show broadened multi 
frequency peaks as reported in our previous reports [20,21,22, 30]   
 
 

 
Fig.4  Flow map for Marangoni flow in half-zone liquid bridges of Pr=0 fluid. 

Numeral beside each key represents m and the mode of oscillation. 
Thin solid line: the first critical condition. 
Thick dotted line : the second critical condition. 
Thin dotted lines separate different flow structures among steady 3-D flows. 

 
 
4.2 Results for Pr=0.01 and 0.02 
 
4.2.1 First transition and Rec1  

For Pr=0.01 fluid, the critical conditions for the first flow transitions have been 
reported for As=1.0 and As=1.2 in previous papers [7,8,9] and As=1.4 and 1.8 [30]. With 
these small, but finite, values of Pr, a coupling between flow and temperature fields gives 
influences on stability limit of the axisymmetric steady Marangoni flow. Present results 
indicate that the coupling stabilizes the axisymmetric steady Marangoni flow, as shown in 
Fig.5.  
  
4.2.2 Second flow transition and Rec2 

The second critical Reynolds numbers are plotted in Fig. 6 together with the Rec1 
and flow patterns. 3-D oscillatory flows in short liquid bridges are similar to that of Pr=0. At 
around As=1.2, Rec2 exhibits steep increase. Especially for Pr=0.02 fluid, a rotating type 
oscillatory flow is incubated at very large temperature differences. Under much larger Re 
values, rotating oscillatory flow tends to occur over wide range of As.  
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Fig.5  Effect of the Prandtl number on the first critical Reynolds numbers. 

 
 
 

Fig.6  Summary of the critical conditions for low Pr fluid liquid bridges and 
typical types of oscillation under slightly super-critical conditions. 

At Re=9000, Pr=0.01, As=1.0 : (2+1) type oscillation. 
At Re=6500, Pr=0.01, As=1.4 : (2-T) type oscillation. 
At Re=4000, Pr=0.02, As=1.8 : (1-T) type oscillation. 

 Pr= 0.01 and Pr=0.02, As=1.2 



5. CONCLUSION 
 

A set of 3-D numerical simulations was conducted to investigate the behavior of the 
Marangoni flow in half-zone liquid bridges of low Prandtl number fluids, including the limit 
of Pr=0, 0.01 and 0.02. The results elucidated the first and the second critical Reynolds 
numbers of the flow transitions of Marangoni flow as a function of the aspect ratio for the 
case of Pr=0 fluid. A flow map was proposed to predict flow patterns, oscillation mode for 
liquid bridges of Pr=0 fluid. For fluids of Pr=0.01 and 0.02, the first and the second critical 
conditions were determined. 
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