若田光一宇宙飛行士(第38次/39次長期滞在クルー)ミッション勉強会 及びソユーズ宇宙船(37S/TMA-11M)打上げに関する取材説明会

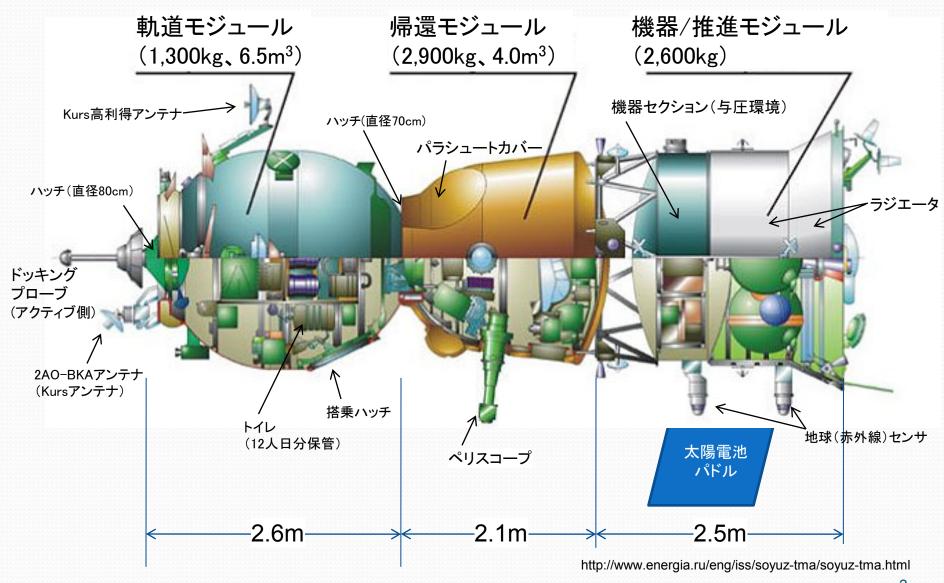
ソユーズ宇宙船(37S/TMA-11M)飛行概要

2013年10月11日

宇宙航空研究開発機構 有人宇宙ミッション本部 きぼう利用推進室

1. ソユーズ宇宙船

- (1) 構成
- (2) 主要諸元
- (3) ソユーズ宇宙船の改良


2. ソユーズロケット

- (1) 構成
- (2) 主要諸元
- 3. バイコヌール宇宙基地
- 4. 飛行概要
 - (1) 打上げ
 - (2) ドッキングまで
 - (3) ISSとのドッキング

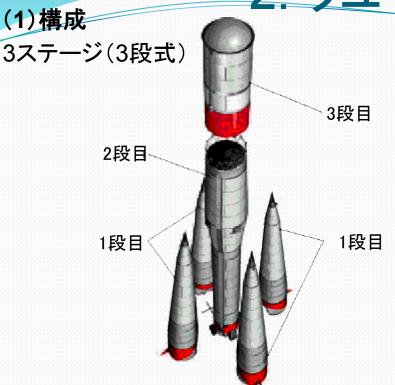
1. ソユーズ宇宙船

(1)構成

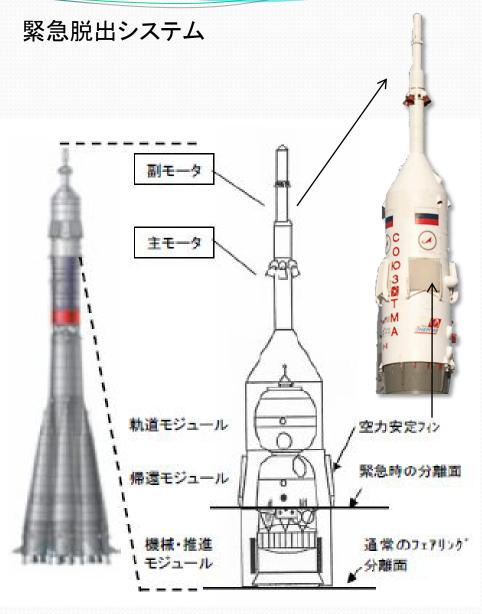
1. ソユーズ宇宙船

(2)主要諸元(ソユーズTMA宇宙船)

打上げ時の重量		最大7,220kg
長さ(突起部含まず)		6.98m
モジュール直径		約2.2m
		(突起部を含めた最大径は2.72m)
搭乗人数		2~3人
居住可能スペース		10.3m ³
ドッキング可能高度		最大425km
搭載可能ペイロード(*)		100kg 以下(3人搭乗時)
回収可能ペイロード(*)		50kg 以下(3人搭乗時)
飛行期間(ISSミッション)		200~210 日間
着陸	メインパラシュート使用	最大2.6m/s、通常1.4m/s
速度	予備パラシュート使用	最大4.0m/s、通常2.4m/s
使用ロケット		ソユーズFG
推進剤(自己着火性)		燃料: 非対称ジメチルヒドラジン
		(UDMH)
		酸化剤:四酸化二窒素(NTO)
軌道制御エンジン		推力300kg 1基(メインエンジン)
姿勢制御エンジン		推力13.3kg 14基
		推力 2.7kg 12基(スラスタ)
太陽電池パドル		長さ10.7m、面積:10m²
		発電量:平均0.6kW(最大1kW)



ドッキング直前のソユーズTMA-16宇宙船(20S) http://spaceflight.nasa.gov/gallery/images/station/crew-21/html/iss020e043931.html


ISSから分離したソユーズTMA-7宇宙船(11S) http://spaceflight.nasa.gov/gallery/images/station/crew-12/html/iss012e24219.html

2. ソユーズロケット

出典:Starsem社のSoyuzユーザーズマニュアル

2. ソユーズロケット

(2)主要諸元(ソユーズFGロケット)

打上げ場所	バイコヌール宇宙基地(有人/衛星打上げ) プレセーツク発射場(衛星打上げ)	
用途	宇宙飛行士、物資の輸送、衛星打上げ等	
打上げ能力	約7,100 ~ 7,200 kg	
ロケット構成	3段式(ブースター4本を1段と見なす場合)	
全長	49.47 m	
最大直径	10.3m(1段ブースタ底部) 2.95m(中央部(2段)の直径)	
打上げ時重量	305.0 t	
推進剤(全段)	酸化剤: 液体酸素 燃料: ケロシン	
打上げ実績 (飛行回数)	1,810回 (2013年9月26日のソユーズTMA-10M打上げフライトまで)	

●ブースタ(1段)

- ・エンジン RD-107A型 燃焼室4基×4本
- ·全長 19.6m 直径 2.68m
- ·推力 838.5kN(海面)、1,021.3kN(真空中)
- ·非推力 262秒(海面)、319秒(真空中)
- •燃焼時間 118秒
- ·酸化剤 液体酸素(27.8t) 燃料 ケロシン(11.8t)
- ·重量 43.4t(うち構造重量3.8t)

●コアステージ(2段)

- ・エンジン RD-108A型 燃焼室4基(ブースタとの違いは バーニアスラスタが2→4基になっている点のみ)
 - •全長 27.1m 直径 2.95m
 - ·推力 990.2kN(真空中)
- 非推力 319秒(真空中)
- •燃焼時間 290秒
- ・酸化剤 液体酸素 燃料 ケロシン
- •重量 99.5t(うち構造重量6.55t)

●3段目

- ・エンジン RD-0110型 燃焼室4基
- ·全長 6.7m 直径 2.66m
- ·推力 297.9kN(真空中)
- ·非推力 325秒(真空中)
- ·燃焼時間 240秒
- ・酸化剤 液体酸素 燃料 ケロシン
- ·重量 25.2t(うち構造重量2.41t)

3. バイコヌール宇宙基地

(1)カザフスタン共和国

3. バイコヌール宇宙基地

3. バイコヌール宇宙基地

(3)第1射点

1957年から使用開始され、

1961年4月のガガーリンの打上げに使われた発射台。

4. 飛行概要

(1)打上げ

・打上げ2時間前

・打上げ20秒前

・打上げ118秒後

・打上げ160秒後

・打上げ4分58秒後

・打上げ9分後

クルーは帰還モジュールへ入室

1段目(ブースタ)と2段目を同時点火

1段目燃焼終了、分離、 2段目は燃焼継続

フェアリング分離

3段目点火、2段目分離

3段目燃焼終了、3段目からソユーズ宇宙船分離

高度49km

高度167km

ロケット組立棟から射点へ移動(打上げ2日前)

射点で垂直に立てる(打上げ2日前)

推進剤充填開始(打上げ5時間前)

打上げ

クルー搭乗開始(打上げ2時間半前) 一番上が野口宇宙飛行士(2009年12月)

4. 飛行概要

(2)ドッキングまで

軌道投入後からISSドッキングまでの作業例

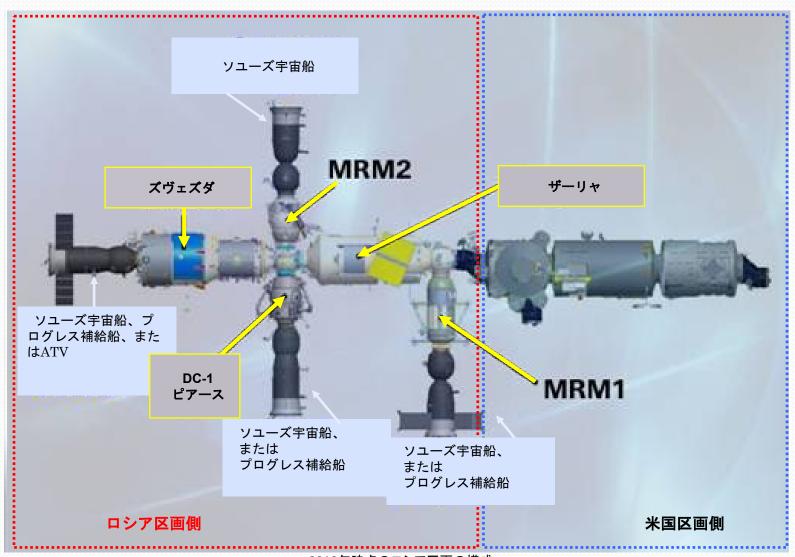
- •二酸化炭素除去装置起動。
- 各システムの点検。テレメトリデータとビデオデータダウンリンク。
- 各システムの状態及びクルーの健康状態について地上に報告。
- •高度調整。
- •姿勢制御。
- テレメトリデータとビデオデータダウンリンク。
- ・軌道モジュールと帰還モジュールの圧力確認・報告。
- ・軌道モジュールと帰還モジュール間のハッチを閉鎖し、 帰還モジュールに着席。
- ドッキングフェーズはクルーによる監視。
- ・ドッキング後は、軌道モジュールへ移動しソコール宇宙服を脱ぐ。
- すべてのモジュール内の圧力確認・報告。
- ・ハッチ開放、ISS内へ入室。

ISSに接近するTMA-17

帰還モジュール内部(TMA-9/13S)

軌道モジュール内部での食事(TMA-9/13S)

ISSヘドッキング後の21Sクルー (左)入室準備中のコトフ・クリーマ飛行士 (右)ISSへ入室する野口飛行士



【写真出典】

http://spaceflight.nasa.gov/gallery/images/station/crew-14/html/iss014e18785.html http://spaceflight.nasa.gov/gallery/images/station/crew-14/html/iss014e18790.html http://spaceflight.nasa.gov/gallery/images/station/crew-17/html/iss017e019024.html

4. 飛行概要

(3)ISSとのドッキング

2010年時点のロシア区画の構成